GNU.WIKI: The GNU/Linux Knowledge Base

  [HOME] [PHP Manual] [HowTo] [ABS] [MAN1] [MAN2] [MAN3] [MAN4] [MAN5] [MAN6] [MAN7] [MAN8] [MAN9]

  [0-9] [Aa] [Bb] [Cc] [Dd] [Ee] [Ff] [Gg] [Hh] [Ii] [Jj] [Kk] [Ll] [Mm] [Nn] [Oo] [Pp] [Qq] [Rr] [Ss] [Tt] [Uu] [Vv] [Ww] [Xx] [Yy] [Zz]


       mq_overview - overview of POSIX message queues


       POSIX  message  queues  allow processes to exchange data in the form of
       messages.  This API is distinct from that provided by System V  message
       queues  (msgget(2),  msgsnd(2),  msgrcv(2), etc.), but provides similar

       Message queues are created and opened using mq_open(3);  this  function
       returns  a  message queue descriptor (mqd_t), which is used to refer to
       the  open  message  queue  in  later  calls.   Each  message  queue  is
       identified  by a name of the form /somename; that is, a null-terminated
       string of up to  NAME_MAX  (i.e.,  255)  characters  consisting  of  an
       initial  slash,  followed  by one or more characters, none of which are
       slashes.  Two processes can operate on the same queue  by  passing  the
       same name to mq_open(3).

       Messages  are  transferred  to  and  from  a queue using mq_send(3) and
       mq_receive(3).  When a process has finished using the queue, it  closes
       it  using mq_close(3), and when the queue is no longer required, it can
       be deleted using mq_unlink(3).  Queue attributes can be  retrieved  and
       (in  some  cases)  modified  using  mq_getattr(3) and mq_setattr(3).  A
       process can request asynchronous  notification  of  the  arrival  of  a
       message on a previously empty queue using mq_notify(3).

       A  message  queue  descriptor  is  a reference to an open message queue
       description (cf.  open(2)).  After a fork(2), a child  inherits  copies
       of  its parent's message queue descriptors, and these descriptors refer
       to the same  open  message  queue  descriptions  as  the  corresponding
       descriptors  in  the  parent.   Corresponding  descriptors  in  the two
       processes share the flags (mq_flags) that are associated with the  open
       message queue description.

       Each  message  has  an  associated  priority,  and  messages are always
       delivered to the receiving process  highest  priority  first.   Message
       priorities  range  from 0 (low) to sysconf(_SC_MQ_PRIO_MAX) - 1 (high).
       On Linux,  sysconf(_SC_MQ_PRIO_MAX)  returns  32768,  but  POSIX.1-2001
       requires only that an implementation support at least priorities in the
       range 0 to 31; some implementations provide only this range.

       The remainder of this section describes some specific  details  of  the
       Linux implementation of POSIX message queues.

   Library interfaces and system calls
       In   most   cases  the  mq_*()  library  interfaces  listed  above  are
       implemented on top  of  underlying  system  calls  of  the  same  name.
       Deviations from this scheme are indicated in the following table:

              Library interface    System call
              mq_close(3)          close(2)
              mq_getattr(3)        mq_getsetattr(2)
              mq_notify(3)         mq_notify(2)
              mq_open(3)           mq_open(2)
              mq_receive(3)        mq_timedreceive(2)
              mq_send(3)           mq_timedsend(2)
              mq_setattr(3)        mq_getsetattr(2)
              mq_timedreceive(3)   mq_timedreceive(2)
              mq_timedsend(3)      mq_timedsend(2)
              mq_unlink(3)         mq_unlink(2)

       POSIX  message  queues have been supported on Linux since kernel 2.6.6.
       Glibc support has been provided since version 2.3.4.

   Kernel configuration
       Support  for   POSIX   message   queues   is   configurable   via   the
       CONFIG_POSIX_MQUEUE   kernel  configuration  option.   This  option  is
       enabled by default.

       POSIX message  queues  have  kernel  persistence:  if  not  removed  by
       mq_unlink(3), a message queue will exist until the system is shut down.

       Programs  using  the  POSIX  message queue API must be compiled with cc
       -lrt to link against the real-time library, librt.

   /proc interfaces
       The following interfaces can be used to  limit  the  amount  of  kernel
       memory consumed by POSIX message queues:

              This  file  can be used to view and change the ceiling value for
              the maximum number of messages in a queue.  This value acts as a
              ceiling  on  the  attr->mq_maxmsg  argument given to mq_open(3).
              The default value for msg_max is 10.  The minimum value is 1 (10
              in  kernels  before  2.6.28).   The  upper  limit  is  HARD_MAX:
              (131072 / sizeof(void *)) (32768 on Linux/86).   This  limit  is
              ignored  for  privileged  processes  (CAP_SYS_RESOURCE), but the
              HARD_MAX ceiling is nevertheless imposed.

              This file can be used to view and  change  the  ceiling  on  the
              maximum  message  size.   This  value  acts  as a ceiling on the
              attr->mq_msgsize argument  given  to  mq_open(3).   The  default
              value  for  msgsize_max is 8192 bytes.  The minimum value is 128
              (8192  in  kernels  before  2.6.28).   The   upper   limit   for
              msgsize_max  is  1,048,576  (in kernels before 2.6.28, the upper
              limit was INT_MAX; that is, 2,147,483,647  on  Linux/86).   This
              limit is ignored for privileged processes (CAP_SYS_RESOURCE).

              This  file  can be used to view and change the system-wide limit
              on the number of message  queues  that  can  be  created.   Only
              privileged  processes  (CAP_SYS_RESOURCE) can create new message
              queues once this limit has been reached.  The default value  for
              queues_max is 256; it can be changed to any value in the range 0
              to INT_MAX.

   Resource limit
       The RLIMIT_MSGQUEUE resource limit, which places a limit on the  amount
       of space that can be consumed by all of the message queues belonging to
       a process's real user ID, is described in getrlimit(2).

   Mounting the message queue filesystem
       On Linux, message queues are created in a virtual  filesystem.   (Other
       implementations  may  also  provide such a feature, but the details are
       likely to differ.)  This filesystem can be mounted (by  the  superuser)
       using the following commands:

           # mkdir /dev/mqueue
           # mount -t mqueue none /dev/mqueue

       The sticky bit is automatically enabled on the mount directory.

       After the filesystem has been mounted, the message queues on the system
       can be viewed and manipulated using the commands usually used for files
       (e.g., ls(1) and rm(1)).

       The  contents  of  each  file in the directory consist of a single line
       containing information about the queue:

           $ cat /dev/mqueue/mymq
           QSIZE:129     NOTIFY:2    SIGNO:0    NOTIFY_PID:8260

       These fields are as follows:

       QSIZE  Number of bytes of data in all messages in the queue.

              If this is nonzero, then the process  with  this  PID  has  used
              mq_notify(3)  to register for asynchronous message notification,
              and the remaining fields describe how notification occurs.

       NOTIFY Notification method: 0 is SIGEV_SIGNAL; 1 is SIGEV_NONE;  and  2
              is SIGEV_THREAD.

       SIGNO  Signal number to be used for SIGEV_SIGNAL.

   Polling message queue descriptors
       On Linux, a message queue descriptor is actually a file descriptor, and
       can be monitored using select(2), poll(2), or epoll(7).   This  is  not




       System  V message queues (msgget(2), msgsnd(2), msgrcv(2), etc.) are an
       older API for exchanging messages  between  processes.   POSIX  message
       queues  provide  a  better  designed  interface  than  System V message
       queues; on  the  other  hand  POSIX  message  queues  are  less  widely
       available (especially on older systems) than System V message queues.

       Linux  does  not  currently  (2.6.26) support the use of access control
       lists (ACLs) for POSIX message queues.


       An example of the use of various message queue functions  is  shown  in


       getrlimit(2),   mq_getsetattr(2),   poll(2),   select(2),  mq_close(3),
       mq_getattr(3),  mq_notify(3),  mq_open(3),  mq_receive(3),  mq_send(3),
       mq_unlink(3), epoll(7)


       This  page  is  part of release 3.65 of the Linux man-pages project.  A
       description of the project, and information about reporting  bugs,  can
       be found at

  All copyrights belong to their respective owners. Other content (c) 2014-2018, GNU.WIKI. Please report site errors to
Page load time: 0.119 seconds. Last modified: November 04 2018 12:49:43.